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We demonstrate that the harmonic inversion technique is a powerful tool to analyze the spectral properties
of optical microcavities. As an interesting example we study the statistical properties of complex frequencies of
the fully chaotic microstadium. We show that the conjectured fractal Weyl law for open chaotic systems �Lu et
al., Phys. Rev. Lett. 91, 154101 �2003�� is valid for dielectric microcavities only if the concept of the chaotic
repeller is extended to a multifractal by incorporating Fresnel’s laws.
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I. INTRODUCTION

Optical microcavities are expected to be key components
in future photonic applications, such as ultralow-threshold
lasers �1,2�, single-photon emitters �3,4�, and correlated
photon-pair emitters �5�. Microdisk cavities with noncircular
cross-sectional shape have recently attracted considerable in-
terest in the quantum chaos community since the internal ray
dynamics is nonintegrable �6,7�. In fact, microdisks can be
considered as open billiards. In a billiard a pointlike particle
moves freely in a two-dimensional domain with elastic re-
flections at the boundary �8�. Depending on the shape of the
boundary, the system shows a variety of dynamical behaviors
ranging from integrable to fully chaotic �9�. Light rays in a
microcavity behave similarly, as they are totally reflected at
the boundary as long as the angle of incidence � �measured
from the normal� is larger than the critical angle for total
internal reflection �c=arcsin�1 /n�, where n is the index of
refraction. If, however, ���c then the light ray escapes re-
fractively according to Snell’s and Fresnel’s laws.

An important topic of quantum chaos is the analysis of the
statistical properties of energy levels in quantum systems
whose classical dynamics is fully or partially chaotic �10�. In
recent years, the focus has shifted from closed to open sys-
tems. Quantum eigenenergies of open systems �resonance
frequencies in the case of microcavities� are complex valued
with the imaginary part being related to the lifetime of the
state. Of particular interest is the fractal Weyl law for open
chaotic systems �11–17�. This is an extension of the well-
known Weyl formula for bounded systems which states that
the number of levels with wave number kn�k is asymptoti-
cally N�k��k2 for the particular case of a two-dimensional
system which scales with the energy, such as the quantum
billiard. The fractal Weyl law for an open chaotic system
�which again scales with the energy� having complex wave
numbers kn can be written as

N�k� = �kn:Im�kn� � − C, Re�kn� � k� � k�. �1�

The cutoff constant C�0 removes fast-decaying states. It is
conjectured that the noninteger exponent is

� =
D + 1

2
=

d + 2

2
, �2�

where D is the fractal dimension of the chaotic repeller of the
open chaotic system �14�; d=D−1 is the dimension of the
repeller in a properly chosen surface of section �18�. The
chaotic repeller is the set of points in phase space that never
leave the system in either forward or backward time dynam-
ics; see, e.g., Ref. �18�.

An essential prerequisite for a statistical analysis is a suf-
ficient amount of resonance data. Resonance spectra can ei-
ther be measured experimentally or computed by exact quan-
tum or semiclassical methods. For some systems, e.g., atoms
in external electric and magnetic fields, the complex S-matrix
poles can be obtained directly by diagonalization of non-
Hermitian matrices using complex dilated basis sets �19,20�.
However, in many theoretical calculations of, e.g., open bil-
liards �21–24� and optical microcavities �25�, or in the cycle-
expanded Gutzwiller-Voros � function �26� the resonances
cannot be obtained directly by matrix diagonalization but
rather by a numerically expensive root search

det M�En� = 0, �3�

where the matrix M�E� depends on the complex-valued en-
ergy E �or on the complex wave number k for billiards and
microcavities�. The calculation of a real-valued spectrum
��E� as the superposition of Lorentzian line shapes is much
less expensive, and it would be a great advantage to be able
to extract the complex S-matrix poles from a real spectrum
��E�. In principle, this can be achieved by fitting the real-
valued spectrum to a sum of Lorentzians. Unfortunately, the
established methods for fitting Lorentzians are restricted to
isolated or weakly overlapping resonances, whereas typical
open systems in physically interesting regions are character-
ized by strongly overlapping resonances.

In this paper we will apply the harmonic inversion
method to obtain the resonances of open dielectric micro-
cavities. We will show that the conjectured fractal Weyl law
for open chaotic systems is valid for microcavities only if the
concept of the chaotic repeller is extended to a multifractal
by incorporating Fresnel’s laws. The paper is organized as
follows. In Sec. II we present the numerical technique for the
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extraction of the resonance poles from a real spectrum ��E�.
In Sec. III we introduce the dielectric microstadium. The
high- and low-index microstadia are investigated in detail in
Secs. IV and V. Conclusion are given in Sec. VI.

II. THE HARMONIC INVERSION TECHNIQUE

Here, we will apply methods for high-resolution signal
processing to extract the resonance positions, widths, and
amplitudes from a real spectrum ��E�. In a first step the
spectrum is Fourier transformed with appropriate frequency
filters to obtain a band-limited time signal. This time signal
is analyzed, in the second step, by a high-resolution har-
monic inversion method. The harmonic inversion method for
signal processing was introduced by Wall and Neuhauser
�27� and then refined and improved by Mandelshtam and
Taylor �28,29�. It has proved to be a powerful tool for both
the high-resolution analysis of quantum spectra �30� and the
semiclassical quantization of nonintegrable systems �31–34�.
For a review on the use of the harmonic inversion method in
semiclassical physics, see Ref. �35�. Technically, the har-
monic inversion problem can be recast as a set of nonlinear
equations, which can be solved by either linear predictor,
Padé approximant, or direct signal diagonalization �36�. Al-
though details of the procedure have already been published,
we provide here, for the convenience of the reader and to
make the paper self-contained, a brief description of the har-
monic inversion method extended to the extraction of reso-
nances from experimental or theoretical spectra given as su-
perpositions of Lorentzians, i.e., spectra of the form

f�	� = �
k

Ak

�	 − 
k�2 + ��k/2�2 , �4�

where the �
k ,�k ,Ak� are the frequency positions, widths,
and amplitudes of the resonances. The frequency spectrum
�4� can be interpreted as the Fourier transform of a time
signal

C�t� = �
k

dke
−i	kt, �5�

with complex frequencies 	k=
k− i
2�k and complex values

dk simply related to the amplitudes Ak. The challenge is to
determine very broad resonances deep in the complex plane
and to resolve individual resonance poles in regions with
strongly overlapping resonances. Basically, the harmonic in-
version algorithm is split into the following two steps.

In a first step, a frequency window �	0−�	 /2,	0

+�	 /2� is chosen. A band-limited signal CBL�t� with a finite
number of about 50–200 frequencies is obtained by the ap-
plication of a windowed discrete Fourier transform to the
frequency spectrum �4�. The band-limited signal is evaluated
on an equidistant grid with time step =2� /�	 and reads

cn 	 CBL�t = n� = �
j=j1

j2

f�	 j�ei�	j−	0�n, �6�

with n=0,1 , . . . ,NBL−1. The limits j1 and j2 of the sum in
Eq. �6� are taken so that the equidistant grid points 	 j of the

digitized spectrum �4� cover the selected frequency filter
�	0−�	 /2,	0+�	 /2�. The frequencies in the exponent of
Eq. �6� are shifted by −	0 to reduce the phase oscillations of
the band-limited signal. The number NBL of data points cn of
the band-limited signal is restricted by the number of grid
points in the frequency window, i.e., NBL� j2− j1+1. We
choose NBL=2K, where K is an upper bound of the number
of resonances in the window �see below�.

In a second step, the �shifted� frequencies 	k�=	k−	0 of
the band-limited signal �6� are obtained by solving the non-
linear set of equations

cn = �
k=1

K

dkzk
n, n = 0,1, . . . ,2K − 1, �7�

where zk	exp�−i	k�� and dk are in general complex varia-
tional parameters. As the number of frequencies in the band-
limited signal is relatively small �K�50–200�, several vari-
ants of Prony’s method �37�, which otherwise would be
numerically unstable, can now be applied successfully, e.g.,
linear predictor, Padé approximant, or direct signal diagonal-
ization �36�. Here, we briefly elaborate on the Padé approx-
imant.

Let us assume for the moment that the signal points cn are
known up to infinity, n=0,1 , . . .�. Interpreting the cn’s as
the coefficients of a Maclaurin series in the variable z−1, we
can define the function g�z�=�n=0

� cnz−n. With Eq. �7� and the
sum rule for geometric series, we obtain

g�z� 	 �
n=0

�

cnz−n = �
k=1

K

dk�
n=0

�

�zk/z�n = �
k=1

K
zdk

z − zk
	

PK�z�
QK�z�

.

�8�

The right-hand side of Eq. �8� is a rational function with
polynomials of degree K in the numerator and denominator.
Evidently, the parameters zk=exp�−i	k�� are the poles of
g�z�, i.e., the zeros of the polynomial QK�z�. The parameters
dk are calculated via the residues of the last two terms of Eq.
�8�. Application of the residue calculus yields

dk =
PK�zk�

zkQK� �zk�
, �9�

with the prime indicating the derivative d /dz. Of course, the
assumption that the coefficients cn are known up to infinity is
not satisfied and, therefore, the sum over all cnz−n in Eq. �8�
cannot be evaluated in practice. However, the convergence of
the sum can be accelerated by use of the Padé approximant.
Indeed, knowledge of 2K signal points c0 , . . . ,c2K−1 is suffi-
cient for the calculation of the coefficients of the two poly-
nomials

PK�z� = �
k=1

K

bkz
k and QK�z� = �

k=1

K

akz
k − 1. �10�

The coefficients ak with k=1, . . . ,K are obtained as solutions
of the linear set of equations
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cn = �
k=1

K

akcn+k, n = 0, . . . ,K − 1. �11�

Once the ak are known, the coefficients bk are given by the
explicit formula

bk = �
m=0

K−k

ak+mcm, k = 1, . . . ,K . �12�

Note that the Padé approximant not only accelerates the con-
vergence of the sum over all cnz−n in Eq. �8� but also yields
an analytic continuation for z values, where the sum is not
absolutely convergent.

The parameters zk=exp�−i	k�� and thus the frequencies

	k = 	0 + 	k� = 	0 +
i


ln zk �13�

are obtained by searching for the zeros of the polynomial
QK�z� in Eq. �10�. This is the only nonlinear step of the
algorithm. The roots of polynomials can be found, in prin-
ciple, by application of Laguerre’s method �38�. However, it
turns out that an alternative method, i.e., the diagonalization
of the Hessenberg matrix

A =

−

aK−1

aK
−

aK−2

aK
¯ −

a1

aK
−

a0

aK

1 0 ¯ 0 0

0 1 ¯ 0 0

] ]

0 0 ¯ 1 0

� , �14�

with ak the coefficients of the polynomial QK�z� in Eq. �10�,
is a numerically more robust technique for finding the roots
of high-degree �K�60� polynomials �38�.

When the harmonic inversion method is applied to a con-
tinuous spectrum of a scattering system, given as a superpo-
sition of Lorentzian line shapes, the resulting 	k are the com-
plex poles of the S matrix.

III. THE MICROSTADIUM

Below a certain cutoff frequency 	cutoff, microdisklike
cavities can be regarded as two-dimensional systems. In this
case Maxwell’s equations reduce to a two-dimensional scalar
mode equation �39�.

− �2� = n2�x,y�
	2

c2 � , �15�

with effective index of refraction n, frequency 	, and the
speed of light in vacuum c. The mode equation �15� is valid
for both transverse magnetic �TM� and transverse electric
�TE� polarization. We focus on TM polarization with the

electric field E� �x ,y , t�= (0,0 ,��x ,y�e−i	t) perpendicular to
the cavity plane. The wave function � and its normal deriva-
tive are continuous across the boundary of the cavity. At
infinity, outgoing wave conditions are imposed. Note that we
ignore in the following a slight frequency dependence of n.

There are only a few reports in the literature on the spec-
tral statistics of microcavities. In a recent work the resonance
width distribution in the circular disk has been studied �40�.
The integrability of this system allows sufficient resonance
data to be gathered easily. In Ref. �41�, the resonance width
distribution of a circular cavity with strong surface rough-
ness has been analyzed. However, an additional approxima-
tion was necessary in order to get a sufficient amount of
resonances.

In our approach, no such approximation is needed. More-
over, it is not restricted to a particular geometry. As an ex-
ample, we consider the dielectric microstadium as illustrated
in Fig. 1. The cross-sectional area is bounded by two semi-
circles with radius R�0 and two straight lines of length
2L�0. The corresponding stadium billiard is a paradigm for
fully chaotic systems �42,43�. We choose the case L=R
which is the most chaotic one �44�.

The spatial structure of optical modes in microstadia has
been extensively studied in the context of ray-wave corre-
spondence in open systems �45–49�. Our aim is to study the
spectral properties of modes in such a cavity.

IV. HIGH-INDEX MICROSTADIUM

We consider first a GaAs microstadium with a high refrac-
tive index n=3.3, the experimental realization of which has
been reported in Refs. �50,51�.

A. Spectral analysis of resonances

The modes �15� can be numerically computed with the
boundary element method �BEM� using a root search algo-
rithm in the complex-frequency plane �25�. Even though the
BEM is very efficient, it does not allow for obtaining a suf-
ficient amount of resonances for a statistical analysis. Our
improved strategy is therefore based on the BEM and the
harmonic inversion technique. It consists of two steps. In a
first step, we compute spectral data on the real-frequency
axis. For convenience, we choose the total scattering cross
section � as function of the normalized frequency 

=	R /c=kR using the BEM. For a definition of the scattering
cross section we refer to Ref. �25�. We are able to cover the
interval 
� �0,25� where we found 3772 resonances. The
upper bound 
=25 corresponds to R=3.2 �m assuming a
typical wavelength of 800 nm in GaAs devices �50,51�. To

R

2L

refractive index = n

refractive index = 1

s

χ

FIG. 1. Schematic top view of the microstadium cavity. Total
internal reflection of a ray with angle of incidence � is illustrated.
The arc length coordinate along the circumference of the cavity’s
boundary is denoted by s.
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keep the picture clear, Fig. 2 shows the calculated scattering
cross section in a smaller frequency interval.

In a second step we analyze the spectral data on the real-
frequency axis with the help of the harmonic inversion tech-
nique. Figure 3 shows the resulting resonances in the com-
plex plane with Im�
��−0.06. The imaginary part is related
to the quality factor via Q=−Re�
� / �2 Im�
��. The limita-
tions of the harmonic inversion method are as follows. Very
weak and broad resonances, i.e., resonances with small am-
plitudes Ak and large widths �k in Eq. �4� may be over-
looked. Also, in rare cases one true resonance can be fitted
by a sum of two Lorentzians with nearly identical resonance
positions and widths. We have two ways to verify the har-
monic inversion technique. First, we can check exemplarily
resonances with the BEM by using root searching in the
complex plane. We always find good agreement. Second,
from the extracted resonances we can reconstruct the scatter-
ing cross section. Figure 2 reveals good agreement with the
original scattering cross section.

The statistics of imaginary parts Im�
�=−R / �2c�, where
 is the lifetime of the given mode, is depicted in Fig. 4. We
see a clear maximum around Im�
��−0.014.

Figure 5 shows the number of modes with cutoff C
=0.06 according to Eq. �1� versus normalized frequency 

=kR in a log-log plot. The data can be extremely well fitted
by a straight line with slope ��1.98. Because of the well-
pronounced maximum in the statistics of imaginary parts
in Fig. 4 we expect only a small change of the exponent �
when the cutoff C is varied. Indeed, this expectation is con-
firmed by the numerics as we find �� �1.96,2.02� for
C� �0.03,0.1�. As an exponent larger than 2 for two-
dimensional open systems is rather unphysical, we believe
that the regime �2,2.02� is solely due to the numerical uncer-
tainty.

B. The chaotic repeller

The chaotic repeller is the set of points in phase space that
never leave the system in either forward or backward time
dynamics �18�. The stable �unstable� manifold of a chaotic
repeller is the set of points that converges to the repeller in
forward �backward� time evolution. The unstable manifold
therefore describes the route of escape from the chaotic sys-
tem. For the case of chaotic microcavities it has been dem-

0 0.5 1 1.5 2 2.5
Ω
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10

15

20

25

σ/
R

FIG. 2. Calculated total scattering cross section � versus real-
valued frequency 
=	R /c for the high-index microstadium. The
solid curve shows the result of the BEM with a plane wave inci-
dence at 30° to the horizontal line segments of the stadium. The
dashed curve is the reconstructed � based on the resonances ex-
tracted by the harmonic inversion.
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FIG. 3. Resonances in the plane of complex frequencies 
 for
the microstadium with n=3.3. We found 3772 resonances in total.
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FIG. 4. Probability density of imaginary part of resonant fre-
quencies 
 for the high-index microstadium.
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FIG. 5. Number of modes N with cutoff C=0.06 versus fre-
quency 
 in a double-logarithmic plot �solid line� for the micros-
tadium with n=3.3. Dashed line with slope ��1.98 is a least-
squares fit, offset for clarity.
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onstrated that the unstable manifold can play an important
role for the far-field emission pattern �48,52–55�.

Here, we discuss the chaotic repeller of the microstadium
restricted to the Poincaré surface of section �SOS� �18�. It is
a plot of the intersection points of a set of ray trajectories
with a surface in phase space. For billiards and microcavities
it is convenient to take the cavity boundary as the SOS. The
dimension of the repeller on this reduced phase space is d
=D−1. The reduced phase space is parametrized by the arc
length coordinate along the circumference of the cavity’s
boundary, s, and the tangential momentum p=sin �, where �
is the angle of incidence measured from the surface normal;
see Fig. 1.

To compute the repeller we portion the phase space above
the upper critical line for total internal reflection, p
� sin �c=1 /n, into L�L=1024�1024 boxes. For each
box we would like to determine whether it belongs to the
repeller or not. Obviously, this depends on the chosen point
within the box. To soften this arbitrariness the following av-
eraging procedure is used. In each box m=400 trajectories
are started and propagated both forward and backward in
time. Given a cutoff length Lcutoff=20.5R, we assign an in-
tensity I=1 to rays that never enter the leaky region p
�1 /n; otherwise I=0. The weight w� �0,1� associated with
each box is then

w =
1

2m
�
i=1

2m

Ii. �16�

Figure 6 shows the chaotic repeller determined in this way.
The magnifications in Fig. 7 demonstrate the fractal nature of
the repeller.

In order to compute the fractal dimension of the chaotic
repeller, we apply the thermodynamic formalism for fractal
measures; see, e.g., Ref. �56�. As for the determination of the
chaotic repeller, we divide the region �x ,y�= �s /smax,
�p−1 /n� / �1−1 /n��� �0,1�� �0,1� into L�L=1024�1024

boxes with size ��� where �=1 /L. The weights wkl
=w�xk ,yl� from Eq. �16� are normalized such that �klwkl=1.
We write the coarse-grained partition function as

���,q� = �
kl

wkl
q , �17�

where q is a real-valued parameter. The scaling behavior of
the partition function

���,q� � ��q−1�d�q� �18�

defines the generalized or Rényi dimensions d�q�. The di-
mension d�q� can be determined numerically for given q
�1 by computing the partition function � as in Eq. �17� for
increasing box sizes �M =2−M with M =10,9 ,8 ,7 ,6 ,5. The
weight of each resulting box is then the sum of the weights
of the corresponding smaller boxes. Finally, the dimension d
is extracted by fitting the function �18�. The dimension d�0�
is equal to the Minkowski dimension, also called the capac-
ity or box-counting dimension. In the limit q→1, the Rényi
dimension becomes the information dimension

d�1� = lim
�→0

1

ln �
�
kl

wkl ln wkl. �19�

Similar to the general case of d�q� with q�1, d�1� can be
determined by fitting d�1�ln �M to �klwklln wkl as a function
of the box size �M =2−M. The dimension d�2� is called the
correlation dimension since it is related to correlation func-
tions as, e.g., in Ref. �57�.

In the case of a fractal set with uniform measure, i.e., a
point belongs to the set �I=1� or not �I=0�, all dimensions
d�q� have the same value. In the more general case of fractal
sets with nonuniform measure �I�R+�, the dimensions d�q�
differ. In such a case one speaks about a multifractal. The
chaotic repeller is strictly speaking a set with uniform mea-
sure. For numerical reasons, however, we have seen that it is
more convenient to consider a real-valued I�s , p�. That this
approximation is justified can be seen by the fact that the
numerically computed fractal dimensions d�0�, d�1�, and
d�2� are all approximately 1.68. The predicted exponent ac-

1/n
10

p

1

s/smax

FIG. 6. Chaotic repeller �dark regions� of the high-index micros-
tadium in the Poincaré surface of section. The horizontal axis is the
arc length coordinate s /smax� �0,1� and the vertical axis is the
tangential momentum p=sin �� �1 /n ,1�. The rectangular region is
magnified in Fig. 7�a�.

s/smax s/smax

0.64

p

0.83

0.410.395 0.46

(a) (b)

p

0.73

0.719
0.4066

FIG. 7. �a� Magnification of rectangular region in Fig. 6. �b�
Magnification of rectangular region in �a�. The fractal structure of
the chaotic repeller can be clearly seen.
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cording to Eq. �2� and d=1.68 is then around 1.84. Unex-
pectedly, this is not close to the Weyl exponent
�� �1.96,2.02� obtained from the counting of resonances.
Hence, it seems that the conjectured fractal Weyl law fails
for the dielectric microstadium.

In order to see the origin of this failure, let us consider the
escape rate � of the chaotic repeller. Points in the vicinity of
the repeller escape exponentially in time with rate �. To de-
termine this rate, we remark that the numerically computed
repeller in Fig. 6 is an approximation to the real repeller, in
that numerically computed phase space points are never
exactly located on the repeller. We can exploit this fact to
determine � by evolving the numerically computed repeller
in time. Its spatial structure does not change under time
evolution, only the total intensity decays exponentially.
The corresponding decay rate is nothing else than the
escape rate �. We find ��0.056c /R. This translates into
Im�
�=−�R / �2c��−0.028 which is significantly larger than
the mean escape rate of the quasibound modes in Fig. 4. We
conclude that the chaotic repeller as defined above also fails
to describe the mean lifetimes of the quasibound modes.

In the following we show that both problems stem from
the fact that the conventional chaotic repeller ignores the
partial escape at dielectric interfaces according to Fresnel’s
laws. Rays entering the leaky region are not completely
transmitted to the exterior of the cavity. For TM polarization
the reflection coefficient is

RTM = � sin�� − �t�
sin�� + �t�

�2

�20�

with the angle of incidence � and the angle of transmission
�t related by Snell’s law n sin �=sin �t. We can include
Fresnel’s laws in the concept of the chaotic repeller by al-
lowing for a real-valued intensity I assigned to each ray. A
similar approach has been used to describe far-field emission
pattern based on unstable manifolds �48,55�. Initially, we
choose I=1 for a given ray, and whenever the ray enters the
leaky region at a phase space point �s , p� we multiply the
intensity I by the reflection coefficient RTM�s , p�. Finally, the

ray’s intensity is 0� I�1. The chaotic repeller defined in
this way is a set with nonuniform measure I�s , p�; it is a
multifractal.

Using the extended concept of the chaotic repeller we
compute the escape rate to be ��0.034c /R. This gives
Im�
��−0.017 which is in much better agreement with the
distribution of imaginary parts of the quasibound modes de-
picted in Fig. 4. Figure 8 shows the chaotic repeller includ-
ing Fresnel’s laws. The fractal dimensions turn out to be
d�0��1.986, d�1��1.913, and d�2��1.877. The predicted
exponent for the Weyl law is therefore 1.99, 1.96, and 1.94,
correspondingly. The values resulting from the box counting
dimension and the information dimension are in the interval
of the Weyl exponent �� �1.96,2.02� calculated from the
resonances. For the high-index microstadium we therefore
have confirmed the conjectured fractal Weyl law using the
extended concept of the chaotic repeller.

V. LOW-INDEX MICROSTADIUM

Now we proceed to the microstadium with low refractive
index n=1.5. Such a cavity has been fabricated recently by
using a poly�methylmethacrylate� polymer matrix �47,58�.
Here, we can compute the resonances in the interval

1/n
10

p

1

s/smax

FIG. 8. Chaotic repeller of the microstadium with n=3.3 includ-
ing Fresnel’s laws; cf. Fig. 6. Intensity is higher for darker regions,
and vanishes in the white regions.
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FIG. 9. Resonances in the complex-frequency plane for the mi-
crostadium with n=1.5. In total 2893 resonances have been found.
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FIG. 10. Probability density of imaginary part of resonant fre-
quencies 
 for the low-index microstadium.
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Re�
�� �0,75� as can be observed in Fig. 9. For example,
Re�
�=75 corresponds to R=7.2 �m for �=600 nm
�47,58�. The comparison with Fig. 3 reveals that the reso-
nances of the low-index stadium are much deeper in the
complex plane, which reflects the stronger degree of open-
ness due to the larger leaky region sin �c=1 /n. This can
also be seen from the statistics of imaginary parts depicted in
Fig. 10. Here, we observe a clear maximum around Im�
�
�−0.15.

Figure 11 shows a fit to the Weyl law �1� with C=0.3
yielding ��1.75. Varying the cutoff parameter C in the in-
terval �0.25,0.4� we find �� �1.68,1.88�. For the strongly
open microstadium with low index of refraction we see a
clear deviation from the conventional Weyl law for closed
systems as one would expect.

The chaotic repeller including Fresnel’s laws is shown in
Fig. 12. The escape rate for phase space points near the cha-
otic repeller is determined to be ��0.26c /R. This translates
into Im�
��−0.13 in good agreement with the distribution
of the quasibound modes in Fig. 10. Note that Fresnel’s laws
do not change much here since the reflectivity in the leaky
region is in general small due to the low refractive index.
The numerically computed dimensions are d�0��1.512 and

d�1��d�2��1.593. Hence, the predicted exponent is 1.76
and 1.78 which is fully consistent with the fractal Weyl law
with exponent �� �1.68,1.88�.

VI. CONCLUSION

We have demonstrated that the harmonic inversion tech-
nique allows us to compute very efficiently a huge amount of
complex resonances in dielectric microcavities. This is of
great practical value for the statistical analysis of resonances
in the context of quantum chaos and complex scattering. The
approach has been illustrated for the chaotic microstadium
made of GaAs and polymers. We demonstrate that the fractal
Weyl law can be applied to the class of dielectric cavities by
extending the conventional concept of the chaotic repeller by
including partial escape of light according to Fresnel’s laws.
We expect that our finding is of great relevance for the un-
derstanding of ray-wave correspondence in chaotic micro-
cavities. Moreover, it can have implications for multimode
lasing in such cavities �59�.
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